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‘" During the period ccvered by the Grants attention has been focused cn
three areas, all of them of impcrtance in the successful arrclicaticn of
implicit algcrithms to Computational

1. The role of boundarv conaitions for implicit hvperbolic schemes.,

O

2. The stability cf hyperbclic Approximate Factorizaticn schemes
. . . A
in three space dimensions, 7 ' _~
N
3] The rate of convergence to steady state of ADI methods.
This report delineates the progress in each of the above enumerated
areas. The details of the research will be found in repcrts and papercs as

referenced below fcr each of the tasks. L

1. Role of Boundarv Conéitiong

It is well knewn that for problems governed by hyperbolic partial
differential equations one cannot specify becundary conditions along all the
domain. In fact, every point on the boundary wnich receives Infcrmation,
via the characteristics, from the initial data must be excluaed from

boundary value specification. On the other hand, ir the numerical sclution

(1]

of the aprroximating difference ecuations one must cften use those "excluded"
boundary points in crder to advance the integraticr tempcrally. (This mav

be avoided by using upwind differencing; cne then, however, may pav a

"

rice--e.g. lower spatial accuracy.) The theorv of how tc treat numerically
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these "forbidden" hyperbolic boundaries is due to Kriess et al [1,Z,
and Osher [6,7]. The theury 1s not easy %o applv to =vstems ci ecuations
or irn more than one space dimension. In the multidimensicnal case one must
assume periodic solutions in the directions not normal to the boundary being
investigated. Application of the G-K-S thecry to one-dimensional Beam-
Warming type algorithms was carried out by Gustafsson and Clicer {&], and
Yee, Beam ané Warming [2) for extrazpclation-tvpe boundary conditicns.

In the present research it was thought interesting tc find out whether
the conclusions drawn from the one-dimensional analysis carrv over t¢ the
2-D case. Some previous work [10]) with explicit schemes indicated that this
is not always the case. The details of the present investigaticn were repcrte

at the NASA-Ames workshcp on boundary conditions (Oct. 198l), have come out

as an ICASE repor. and were published in the JCP [11l]. The major conclusicns

. el
of tnis study may be summarized as follows: extrapclation-type boundary
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conditions which are stable in one dimensicn will remair c©. .1 =—wc dimensicns

(o

if the indicated extrapolation is carried outr in & directicrn ncrmal tc the
plane of the boundary. If the extrapolation ls dcne 1n & non-normal
direction (skewed to the boundary plane), then the cutccme derends on

the nature of the basic internal~points algor:tnm. If this 1interrnzl scheme

is strictly dissipative (e.g. MacCormack's al
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carry over even 1if the extrapolation in Z-D be performed ... a directicn
skewed to the boundary plane. If, on the cther hand, the internzl scheme
1s not strictly dissipative (e.g. backward Euler), then the :-I bcundarv
treatment remains stable only if the extrapolaticr. 15 rormal to the boundary

plane; otherwise it is unstable (not ever conditicnally

2. Stability of 3-D Hvperbclic Approximate Factorizatinr Schemes

It has been pcinted out by Dwcver and Thames [12] that the Beam-Warming
algerithm in 3~D is unstable for the linear wave ecuation, It was suspected
but not demonstrated that this is alsc true of the gvstem cf linearizecd
equations resulting from Euler's equaticrms cf cas-dvnamics.

As part or the present research effort it was undertaken first %o

eguaticns). The second task was to tryv and construct an algoritha which
will retain the advantages of the Beam-Warming algorithm (approximasze
tcrization of the implicit terms, "deltz form" ©f the urknown vecter),
cr of the LODQ alcorithm (see [12]), and vet beccme stable due tc chances
irtroduced into the explicit terms only. Both tasks were ccmrlezed
successfully and are reported in [13].

The new stabilized algorithm has the fcllowing feazures: three LCD

bt

(

ccally cne dimensional) fractional steps are folluwed by olicis
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. The total algcrithm is stable in 2 d&inm
order accurate for a large range of the Courant number when iz convercges
to steady state. The intermediate steps leading tc the s+<eady state are
not time consistent ancd hence du not represent a truly evelving solution.
This new algorithm when applied to the 2-dimensional case (which is stabl
for the standard AF methods) accelerates the convergence tc stcady state

by factors beiwzen 2 to 3 depending on the mesh size. The numerical




experiments carried out in cornnection with this work brocugnt out the little
known (or rather little acknowledged) fact that the rate cf corvergence

of hyperbolic AF algorithms to steady state i1s very sensitive to <he time
step. In fact, for the linear wave equation, -he optimal, CTcocurant number
is of order unity. Similar resul+ts for the full Euler eguations were also
reported by Thompkins and Bush [14]), These empirical observations led us

to concentrate on the third tepic.

3. Convergence Rate to Steadyv State of ADI Method

ADI methods for elliptic partial differential eguaticns were proposed
already in the 1950's. Particularly well known were the algorithms du-~ tc
Peaceman and Rachford [15] anc Douglass and Gunn [16]. 1In recent vears ADI
metheds were advoca*red to solve parabolic and hyperbolic partial differential

ra

71, andé Brilev and McDonalid ([i18]. The

j

equations, see Beam and Worming |
motivation for this extension of ADI schemes was tc combine the convenience
of one-dimensional easily invertible cperators and the unconditionel
stability of implicit methods. As pcinted cuit above, the large expected
gains over direct explicit solvers have not been realized fully. This 1is
so because the rate of convergerce te steady state 1s very sensitive tc

the Courarnt number and it decreases rapidly, i1.e. the iteration count grows

rapidly, when tue calculaticrn is carried out away from an cptional time

0]

tep. At the optimal Courant number the convergence rate is comparable to
those cof explici+c methwods.

The work carried out under the present G

Al

ants concentrated so far con
the varabolic case which is easier *+3 analyze. The results obtained so

far mav be summarized as follows (see [19]):

3.1 The convergence to steadyv state of parabolic ADI sclvers, such

f

as the Douglass-Gunn or the Peacemar-Rachford algorithms, .s analyzed in
terms of the L2 norm cf the residual. This approachn, which assumes the
presence of many freguencies and averages over their spectrum, turns ocut to
be sudcessful in predicting how the number cf iterations needed to converce

to steady state depends on the Courant number,

3.2 A new corrected ADI algerithm has been devised which has the
following properties:
a) Its construction necessitates only the addition of the same

explizit term %~ 211 existing Approximate Factorization codes.




LI

L) It is robust in the sense that it need not be fine-tuned
for different mesh sizes, different grid stretchings, mixed Dirichlet-
Neumann becoundary conditions, etc.

c) The rate of convergence to steady state is substantially
impreved and 1is insensitive te the Courant number over a large range.

d) Its method of derivation 1is easily extended to the three-

dimensional case.
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